About this Course

This class is offered as CS6505 at Georgia Tech where it is a part of the Online Masters Degree (OMS). Taking this course here will not earn credit towards the OMS degree.

In this course, we will ask the big questions, “What is a computer? What are the limits of computation? Are there problems that no computer will ever solve? Are there problems that can’t be solved quickly? What kinds of problems can we solve efficiently and how do we go about developing these algorithms?” Understanding the power and limitations of algorithms helps us develop the tools to make real-world computers smarter, faster and safer.

Course Cost
Free
Skill Level
advanced
Get Certified Now

View the Nanodegree

Included in Product

Rich Learning Content

Interactive Quizzes

Taught by Industry Pros

Self-Paced Learning

Student Support Community

Join the Path to Greatness

This free course is your first step towards a new career with the Intro to Programming Nanodegree Program.

Free Course

Computability, Complexity & Algorithms

by Georgia Institute of Technology

Enhance your skill set and boost your hirability through innovative, independent learning.

Icon steps 54aa753742d05d598baf005f2bb1b5bb6339a7d544b84089a1eee6acd5a8543d
 
 

Course Leads

Charles Brubaker
Charles Brubaker

Instructor

Lance Fortnow
Lance Fortnow

Instructor

Hariharan Venkateswaran
Hariharan Venkateswaran

Instructor

Prerequisites and Requirements

Students are expected to have a solid grasp of the basics of discrete mathematics. Discrete Mathematics and Its Applications by Ken Rosen provides an excellent background for this course.

If you answer “no” to any of the following questions, it may be beneficial to acquire background knowledge concurrently or prior to taking the course.

  1. Can you show that the sum of the first n numbers is n(n+1)/2? Can you give the proof as an induction on n?
  2. Can you give an O(n log n) algorithm for sorting n numbers?
  3. Can you describe the difference between breadth-first and depth-first search?
  4. Given an nxn matrix A and an n-dimensional vector b, can you give a polynomial-time algorithm to find a vector x such that Ax=b?

See the Technology Requirements for using Udacity.

Why Take This Course

You will learn a wealth of tools and techniques that will help you recognize when problems you encounter in the real-world are intractable and when there an efficient solution. This can save you countless hours that otherwise would have been spent on a fruitless endeavor or in re-inventing the wheel.

What do I get?
Instructor videos Learn by doing exercises Taught by industry professionals